27 herein by reference. The Xba I-Pvu II fragment thus modified is ligated back into the intermediate plasmid to form pChim2. This plasmid then is capable of expressing in a suitable host a cleanly constructed murine variable/human constant chimeric heavy chain. In an analogous fashion, but using mRNA templates for cDNA construction for human kappa rather than γ chain, the expression plasmid for chimeric light chain is prepared. The foregoing two plasmids are then double transformed into *E. coli* W3110, the cells grown and the chains reconstituted as set forth in paragraph E.1–E.3 supra. E.5 Preparation of Altered Murine Anti-CEA Antibody E.5.1 Construction of Plasmid Vectors for Direct Expression of Altered Murine Anti-CEA Heavy Chain Gene The cysteine residues, and the resultant disulfide bonds in 15 the region of amino acids 216–230 in the constant region of murine anti-CEA heavy chain are suspected to be important for complement fixation (Klein, et al., *Proc. Natl. Acad. Sci.*, (USA), 78: 524 (1981)) but not for the antigen binding property of the resulting antibody. To decrease the probability of incorrect disulfide bond formation during reconstitution according to the process of the invention herein, the nucleotides encoding the amino acid residues 226–232 which includes codons for three cysteines, are deleted as follows: A "deleter" deoxyoligonucelotide, 5' CTAACACCATGT-CAGGGT is used to delete the relevant portions of the gene from pγCEAtrp207-1* by the procedure of Wallace, et al., *Science*, 209: 1396 (1980) or of Adelman, et al., *DNA* 2, 183 (1983). Briefly, the "deleter" deoxyoligonucelotide is 30 annealed with denatured pγCEAtrp207-1* DNA, and primer repair synthesis carried out in vitro, followed by screening by hybridization of presumptive deletion clones with P³² labelled deleter sequence. E.5.2 Production of Cysteine Deficient Altered Antibody 35 The plasmid prepared in E.5.1 is transformed into an *E. coli* strain previously transformed with pKCEAtrp207-1* as described above. The cells are grown, extracted for recombinant antibody chains, and the altered antibody reconstituted as described in E.1.10. E.6 Preparation of Fab E.6.1 Construction of a Plasmid Vector for Direct Expression of Murine Anti-CEA Gamma 1 Fab Fragment Gene pγCEAFabtrp207-1* FIG. 13 presents the construction of pyCEAFabtrp207-1*. 45 5 μ g of pBR322 was digested with Hind III, the cohesive ends made flush by treating with Klenow and dNTPs; digested with Pst I, and treated with BAP. The large vector fragment, fragment I, was recovered using 6 percent PAGE followed by electroelution. 5 μg of pγCEAtrp207-1* was digested with both BamH I and Pst I and the ~1570 bp DNA fragment (fragment II) containing the trp promoter and the gene sequence encoding the variable region continuing into constant region and further into the anti-CEA gamma 1 chain hinge region, was 55 plasmid. isolated and purified after electrophoresis. second II 4. A p plasmid. Expression of the anti-CEA gamma 1 chain Fab fragment rather than complete heavy chain requires that a termination codon be constructed at the appropriate location in the gene. For this, the 260 bp Nco I-Nde I DNA fragment from 20 μg 60 of the pγ298 was isolated and purified. A 13 nucleotide DNA primer, the complement of which encodes the last 3 C-terminal amino acids of the Fab gene and 2 bases of the 3 needed for the stop codon, was synthesized by the phosphotriester method (supra). The probe hybridizes to nucleotides 754 to 767 (FIG. 4) which has the following sequence: 28 ## AspCysGlyStop 5' GGGATTGTGGTTG 3 The third base of the stop codon is provided by the terminal nucleotide of the filled-in Hind III site from pBR322 cleavage described above. 500 ng of this primer was used in a primer repair reaction by phosphorylation at the 5' end in a reaction with 10 units T4 DNA kinase containing 0.5 mM ATP in 20 µl, and mixing with ~200 ng of the Nco I-Nde I DNA fragment. The mixture was heat denatured for 3 minutes at 95° and quenched in dry-ice ethanol. The denatured DNA solution was made 60 mM NaCl, 7 mM MgCl₂, 7 mM Tris HCl (pH 7.4), 12 mM in each dNTP and 12 units DNA Polymerase I-Large Fragment was added. After 2 hours incubation at 37° C., this primer repair reaction was phenol/CHCl₃ extracted, ethanol precipitated, digested with BamH I and the reaction electrophoresed through a 6 percent polyacrylamide gel. ~50 ng of the 181 bp blunt end to BamH I DNA fragment, fragment III, was isolated and purified. ~100 ng of fragment I, ~100 ng each of fragments II and III were ligated overnight and transformed into *E. coli* K12 strain 294. Plasmid DNA from several tetracycline resistant transformants was analyzed for the proper construction and the nucleotide sequence through the repair blunt end filled-in Hind III junction was determined for verification of the TGA stop codon. E.6.2 Production of Fab Protein The plasmid prepared in E.6.1 is transformed into an *E. coli* strain previously transformed with pKCEAtrp207-1* as described above. The cells are grown, extracted for recombinant antibody chains and the Fab protein reconstituted as described in E.1.10. What is claimed is: - 1. A process for producing an immunoglobulin molecule or an immunologically functional immunoglobulin fragment comprising at least the variable domains of the immunoglobulin heavy and light chains, in a single host cell, comprising the steps of: - (i) transforming said single host cell with a first DNA sequence encoding at least the variable domain of the immunoglobulin heavy chain and a second DNA sequence encoding at least the variable domain of the immunoglobulin light chain, and - (ii) independently expressing said first DNA sequence and said second DNA sequence so that said immunoglobulin heavy and light chains are produced as separate molecules in said transformed single host cell. - 2. The process according to claim 1 wherein said first and second DNA sequences are present in different vectors. - 3. The process according to claim 1 wherein said first and second DNA sequences are present in a single vector. - 4. A process according to claim 3 wherein the vector is a - 5. The process according to claim 4 wherein the plasmid is pBR322. - 6. The process according to claim 1 wherein the host cell is a bacterium or yeast. - 7. The process according to claim 6 wherein the host cell is *E. coli* or *S. cerevisiae*. - **8**. A process according to claim **7** wherein the host cell is *E. coli* strain X1776 (ATCC No. 31537). - **9**. A process according to claim **1** wherein the immunoglobulin heavy and light chains are expressed in the host cell and secreted therefrom as an immunologically functional immunoglobulin molecule or immunoglobulin fragment.